3.7.87 \(\int \frac {x}{(a+b x^2) \sqrt {c+d x^2}} \, dx\)

Optimal. Leaf size=49 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {444, 63, 208} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]]/(Sqrt[b]*Sqrt[b*c - a*d]))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )}{d}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 49, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]]/(Sqrt[b]*Sqrt[b*c - a*d]))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 59, normalized size = 1.20 \begin {gather*} -\frac {\tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2} \sqrt {a d-b c}}{b c-a d}\right )}{\sqrt {b} \sqrt {a d-b c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTan[(Sqrt[b]*Sqrt[-(b*c) + a*d]*Sqrt[c + d*x^2])/(b*c - a*d)]/(Sqrt[b]*Sqrt[-(b*c) + a*d]))

________________________________________________________________________________________

fricas [B]  time = 1.20, size = 231, normalized size = 4.71 \begin {gather*} \left [\frac {\log \left (\frac {b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \, {\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} - 4 \, {\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {b^{2} c - a b d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, \sqrt {b^{2} c - a b d}}, -\frac {\sqrt {-b^{2} c + a b d} \arctan \left (-\frac {{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {-b^{2} c + a b d} \sqrt {d x^{2} + c}}{2 \, {\left (b^{2} c^{2} - a b c d + {\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )}}\right )}{2 \, {\left (b^{2} c - a b d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2 - 4*(b*d*x^2 + 2*b*c -
 a*d)*sqrt(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2))/sqrt(b^2*c - a*b*d), -1/2*sqrt(-b^2*c
+ a*b*d)*arctan(-1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(-b^2*c + a*b*d)*sqrt(d*x^2 + c)/(b^2*c^2 - a*b*c*d + (b^2*c*
d - a*b*d^2)*x^2))/(b^2*c - a*b*d)]

________________________________________________________________________________________

giac [A]  time = 0.32, size = 39, normalized size = 0.80 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {d x^{2} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/sqrt(-b^2*c + a*b*d)

________________________________________________________________________________________

maple [B]  time = 0.01, size = 300, normalized size = 6.12 \begin {gather*} -\frac {\ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-\frac {a d -b c}{b}}\, b}-\frac {\ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-\frac {a d -b c}{b}}\, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^2+a)/(d*x^2+c)^(1/2),x)

[Out]

-1/2/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((
x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x+(-a*b)^(1/2)/b))-1/2/b/(-(a
*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x-(-a*b)^(1/
2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x-(-a*b)^(1/2)/b))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 0.65, size = 39, normalized size = 0.80 \begin {gather*} \frac {\mathrm {atan}\left (\frac {b\,\sqrt {d\,x^2+c}}{\sqrt {a\,b\,d-b^2\,c}}\right )}{\sqrt {a\,b\,d-b^2\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + b*x^2)*(c + d*x^2)^(1/2)),x)

[Out]

atan((b*(c + d*x^2)^(1/2))/(a*b*d - b^2*c)^(1/2))/(a*b*d - b^2*c)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 6.89, size = 36, normalized size = 0.73 \begin {gather*} \frac {\operatorname {atan}{\left (\frac {\sqrt {c + d x^{2}}}{\sqrt {\frac {a d - b c}{b}}} \right )}}{b \sqrt {\frac {a d - b c}{b}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

atan(sqrt(c + d*x**2)/sqrt((a*d - b*c)/b))/(b*sqrt((a*d - b*c)/b))

________________________________________________________________________________________